It is evident from Egs. (23), (29), (33), and (38) that the tangential stress at the plate increases with
rise in T and Gr and decreases with rise in ¢. It is also seen that in the first, second, and fourth cases the
flux breaks away after a certain time which depends on the Prandtl and Grashof numbers.

NOTATION

Gr, Grashof number gS8T, V/ug; g, acceleration due to gravity; T, fluid temperature; T, plate tempera~
ture for t < 0; Ty, change in plate temperature for t = 0; t, time; u, fluid velocity in the x direction; ug
change in plate velocity for t = 0; uy, dimensionless velocity (u/uo); y, normal coordinate; «, thermal con-
ductivity; B, thermal expansion coefficient; 1, dimensionless coordinate (y'uO/ ¥); 0, dimensionless tempera~
ture (T — Tg)/ T,; v, kinematic viscosity; ¢, Prandtl number (v/a); 7, dimensionless time (u%t/v).
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CALCULATION OF THE HEATING OF
POLYDISPERSE PARTICLES IN A GAS

Yu. A. Popov UDC 536.244

The problem of the heating of polydisperse particles in a gas is solved with allowance for the
temperature field inside a particle and the variation of the gas temperature.

At the time t = 0 let an adiabatically closed volume of gas with a temperature T(0) be uniformly filled
with homogeneous, polydisperse, spherical particles having a temperature T;,. The problem consists in de-
termining the average temperatures of the particles and the gas at any time, The energy equation is written
in the form

dT ° noar
- 4 f 2 - P — 1
P 7 + “Cppp”oévf(fi)[év’ 5 d"]dfx 0. (1)
The temperature of the particles is determined from the heat-conduction equation
oT » 2
5 Ve

We choose the initial temperature of the particles as the origin of the temperature frame, and then the initial
and boundary conditions take the form

Tpt =0)=0;
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oTp Bi
_— =— [T —T . Bl 3
or e, " [ P (r1 ) (3)
With allowance for (3), the solution of (2) with T = const is known [1]:
Tp . rysin (uur/ry) 2 at
Fo=1-V4, AT e [—— —-]= i),
T El n . P Pn 7 9 () (4)

4 — 2 (sin pp, — py cOS i)
sin T ]
P — sin g, cosp,

where up are the roots of the equation tan y = —u/(Bi— 1). We assume that the Biot number is independent of
time, If T depends on time, then we find the solution with the help of Duhamel's theorem [1]

LaT (t

=T0) o)+ s (') df. (5)

Using (4) and (5), the integral in (1) is converted to the form

rt t ’ '
j’ r2 an df T (0) a(ﬁ dT (t ) 6(Pi (t—'t ) dt’ ,
or dt ot

] 0

where

09, a4 < 2 4 2
—~ = 6 — SN'B_exp[— plat/ri],
ot f13 ,,A_'_!, n P[ W l]

B, = Bi?/(u} + Biz — Bi).

Using these expressions, from ( 1) we obtain

T = = T (O expl—paat/ri] 1 (dT(E) 0 o0 2 dt'}d,
o 1oz T Ty T S et jan (®)

where n = c'p'/cp is the ratio of the heat capacity of the particles to the heat capacity of the gas per unit
volume of the gas suspension. This quantity depends weakly on temperature. We will neglect its temperature
dependence. In (6) r; is the mass-average radius of the particles,

= u{ rif(ry) dry. (7)
0

From the condition of adiabaticity we write
P (Tp > +coT (f) = (0’ + cp) Ty ' (8)
where (Tp> is the average particle temperature at the time t.

We introduce the dimensionless variables T = 2at/r} x = r{/r;, where 8 is a scaling parameter intro-
duced for convenience. We rewrite (6) in the form

a +——5 fm)zB [7 O expi— vt 4 [T expi— i c — v e Jar, = 0 ©)
0 .
We find the Laplace transform of this equation:
T (s 1 syt (10)
T.——(O) = {s[1 +=y (SN}
where
y(s) = M‘( ) Z zﬂzmz ry (11)

and z = sf%?%/ 7% The smaller the Biot number, the faster the series in (11) converges; as Bi — = the series
is summed in closed form [2]:
o 1 1 1
' =——— | ncth(nd) — — .
’zl 22 _|_ n2 22 [ ( ) V4 } (12)
Thus, the problem comes down to the calculation of the function y(s) and the inversion of the Laplace
transformation. A convenient method of inverting the Laplace transformation was suggested by Salzer [3]:
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TABLE 1. Table of Functions y(s)

s g_n_:g %i:j; g'i:;; ﬂBT:“dA Ei=~_}6,4
1 0,1897 0,4815 0,8316 0,1549 0,8094
2 0,1383 0,3752 0,7404 0,08452 0,5272
3 0,1144 0,3199 0,6781 0,05850 0,3973
4 0,09588 0,2843 0,6313 0,04484 0,3209
5 0,08981 0,2588 0,5943 0,03640 0,2701
6 0,08231 0,2393 0,5638 0,03066 0,2337
7 0,07644 0,2238 0,5380 — 0,2063
8 0,07167 0,2110 0,5159 — 0,1847
1 Siea m
— f ¢'F (s) dszEAf{(t)F(k). (13)
200§ A=l

In this method one must know the values of the transform at the natural values s =1, 2,...,m. The functions
A{{n( t) are tabulated in [3] for values of t from 0 to 10 with a step of 0.1-1 for m from 1to 10. The larger
m.is the more precise the inversion, The convenience of the scaling parameter £ consists in the fact that
through its appropriate choice one can find the transform by Salzer's methed for an arbitrary time and not
only for those cases for which the table was compiled.

The calculations were made for a radial density distribution of the particles in the form
Flrg = A}t e (14)

for ry = 105 um, In this way a specific technical problem was solved, while the distribution (14) describes
the experimental data with satisfactory accuracy, The function y(s) was calculated on a Mir-2 computer,
while the inversion by Salzer's method was carried out on an Electronika S-50.

From (8) we find

(T > IT, = 2250 w11y, (15)
n
From this, using {10} for the Laplace transform, we obtain
(Tp(s> _ (1+%y6) (16)
T, sil 4=y (s)]

The results of the calculations are presented in Figs. 1 and 2. The case of % = 0 corresponds to heating of
the particles at a constant gas temperature. We note that without the introduction of the scaling factor g% the
inversion of the Laplace fransformation by Salzer's method would have been impossible in a wide range of
Fo. The method was used for m = 6 and, as a control on the accuracy, for m = 8§ with a fixed § in some
range of Fo, Further, by changing 32 by an order of magnitude we made a calculation at the preceding end
point and advanced farther along Fo. The values of the functions y(s) are presented in Table 1.

The results obtained can be used to calculate particle heating in a tuyere in a stream of hot gas. To
calculate the Biot number it is sometimes necessary to allow for radiant heat exchange. The fine particles
rapidly acquire the temperature of the gas and irradiate the large particles. In this case the effective coef-
ficient of radiant heat transfer is Ay = 40(T + Ty) 3r;. In addition, one must allow for the difference in the
gas and particle velocities in determining the Nusselt number. All this leads to the fact that Bi, and hence
Uyn, will depend on the particle radius, and the calculation of the function y(s) is somewhat complicated. In
a specific engineering problem a calculation by this method gave a result diametrically opposite to that of a
calculation using the two-temperature approximation. For example, limestone particles with a distribution
(14) are hardly heated in a time of 5° 10°° sec when % = 0. A calculation under the assumption that the coef-
ficient of thermal conductivity of the particle material is infinitely high leads to almost complete heating in
this case for particles with a radivs of 10¢ m.,

The stated problem can be solved by the numerical methods developed in [4, 5] in a more general
statement with allowance for the temperature dependence of the thermophysical properties and for the time
dependence of the Biot number. Although the proposed method has less generality, it requires less computa~
tional work, and in some cases it provides the possibility of obtaining a closed analytical result. For exam-
ple, with a constant gas temperature and Bi — < we obtain

~L7f’>— =1 —% z é‘f’([;) exp [— n2an2t/r}] dr,. (17)

n=1
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Let the radial distribution of the particles have the form
Firy) = Arfexp[— Alrk, (18)

where r;, is the radius corresponding to the maximum of f; A = 4/r§n\/—1r_ . Performing the integration and
summation in (17), with allowance for (18) we obtain

(Tpd 12% dv

R AN Y. 19
T a2 RIS (19)
where
Ty = Tﬂzat/rrzno (20)
If 1y < 1, then from (19) we have
. 12 - '
(Tp)/T=—n2—V1:1. (21)
When 14 > 1,
(Tp) _ 1__6_(14_21/?,)[“’?;. (22)
T B <
NOTATION

¢, cp, specific heats at constant pressure for gas and particle material, respectively; p, Pps densities .
of gas and particle material; c'p', heat capacity of particles per unit volume of gas suspension; T, Tp(r), gas
temperature and particle temperature reckoned from initial particle temperature Ty ® = c'p'/cp, ratio of
heat capacity of particles to heat capacity of gas; f(r), distribution density of particles by radii ry, normal-
ized to one; a = Ap/cp Pps coefficient of thermal diffusivity; Bi, Biot number; Fo = at/ r%, Fourier number;

r,, mass-average radius of particles; s, parameter of Laplace transformation; < >, symbol for average value;
B, scaling parameter; T,, temperature of gas and particles as t —=; t, time; n;, number of particles per
unit volume,
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KINETICS OF THE NEUTRALIZATION OF STATIC
ELECTRICITY IN APPARATUS CONTAINING TWO-
PHASE SYSTEMS OF GAS AND SOLID PARTICLES

V. K. Abramyan, N. N. Kastal'skaya,
and G. I. Pichakhechi

UDC 541.182:537.226

The mechanisms of neutralization of static electricity of disperse systems when ions of the
opposite sign are present in the gaseous medium are discussed,

In the design of neutralizers of static electricity for industrial apparatus containing two-phase systems
of gas and solid particles the calculation of the performance of these neutralizers acquires great importance.
The value of this parameter can be determined by analyzing the process of neutralization of the charges of
particles of the product being treated in the presence of ions of the opposite sign in the gas—air medium of
the working volume of the apparatus. Let us consider a charged spherical particle over which a stream of
ions of the opposite sign flows (Fig. 1).

Under these conditions the variation of the charge of a particle is described by the equation

dg/dt = e { jndS. (1)
s
The flux density is defined as [1]

jun = —nkEg-- Dgradn. (2)

The neutralization of the charges of a particle takes place in accordance with Eq. (2) as a single pro-
cess, but to simplify the solution we will consider two mechanisms separately: a) ion motion directed toward
the surface of the particle due to the electric field; b) ion motion due to diffusion.

Let us consider the first mechanism. The following forces act on an ion which is near a charged parti-

cle:
Ex= Ee + _Epol + —Ec+ Enﬁ‘ Eeclu- {3)
Let us find the components of these voltages on the vector ds:
D Eezllf—e{-cosezg%cosﬁ. 4)
0

To simplify the calculations we assume that -Ee is the same at different points
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